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A computational study has been performed to examine the amplification of three-
dimensional flow features as a vortex with small-amplitude helical perturbations
impinges on a circular cylinder whose axis is parallel to the nominal vortex axis. For
sufficiently weak vortices with sufficiently small core radius in an inviscid flow, three-
dimensional perturbations on the vortex core are indefinitely amplified as the vortex
wraps around the cylinder front surface. The paper focuses on the effect of viscosity
in regulating amplification of three-dimensional disturbances and on assessing the
ability of two-dimensional computations to accurately model parallel vortex–cylinder
interaction problems. The computations are performed using a multi-block structured
finite-volume method for an incompressible flow, with periodic boundary conditions
along the cylinder axis. Growth of three-dimensional flow features is examined using
a proper-orthogonal decomposition of the Fourier-transformed vorticity field in
the azimuthal and axial directions. The interaction is examined for different axial
wavelengths and amplitudes of the initial helical vortex waves and for three different
Reynolds numbers.

1. Introduction
Impact of vortices shed from an upstream cylinder upon a downstream cylinder

occurs in a variety of applications, including flow past bridge pilings, heat exchanger
tubes, tall buildings, clusters of offshore platform risers, and parallel arrays of towed
cables in a cross-flow behind a ship. The interaction of the wake of an upstream
cylinder with a downstream cylinder has been examined by several investigators,
using both two-dimensional numerical simulations (Li et al. 1991; Mittal, Kumar &
Raghuvanshi 1997; Sun, Li & Roux 1993) and experiments (Brika & Laneville
1997; Kiya et al. 1980). A review of earlier work on the interaction between two
cylinders is given by Zdravkovich (1977), and a review of vortex–body interaction in
general, including the two-dimensional parallel vortex–cylinder interaction, is given
by Rockwell (1998). These studies have shown that several different regimes of the
wake flow of a cylinder pair occur depending on the ratio of cylinder spacing L to
diameter d , as well as on the Reynolds number. When the spacing ratio is sufficiently
small (L/d less than about 1.4), the pair of cylinders acts like a single bluff body and
sheds only a single wake, whereas for larger values of spacing ratio the wake vortices
shed by the upstream cylinder impinge on the face of the downstream cylinder. It
is generally observed that the average drag coefficient of the downstream cylinder is
much less than that of the upstream cylinder due to the reduction of mean velocity
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within the upstream cylinder wake; however, the downstream cylinder exhibits greater
fluctuation in drag coefficient due to the impinging vortices. Both the upstream and
downstream cylinders exhibit an oscillating lift force, but the magnitude of the lift
oscillations for the downstream cylinder is significantly greater than that for the
upstream cylinder, again due to the effect of the impacting wake vortices.

The studies cited above concentrate on two-dimensional aspects of the cylinder
wake interaction. Three-dimensional aspects of the interaction of a pair of yawed,
parallel cylinders was investigated by Thakur, Liu & Marshall (2004), yielding experi-
mental results obtained from laser-induced fluorescence flow visualization and from
quantitative measurement of the wake velocity field with particle-image velocimetry,
as well as three-dimensional computational results for a variety of cylinder yaw angles.
For moderate yaw angles, the vortices shed from the upstream cylinder are nominally
parallel to the cylinder axis sufficiently far from the cylinder leading edge, as was
previously observed by Ramberg (1983). The wake vortices of the upstream cylinder
advect back to impinge upon the downstream cylinder. The results of Thakur et al.
(2004) indicate that the degree of three-dimensionality of the vortices increases as the
vortices impinge upon the downstream cylinder, such that even though the wake of the
upstream cylinder appears nominally two-dimensional, the flow becomes increasingly
three-dimensional as the vortices shed from the upstream cylinder impinge upon the
face of the downstream cylinder.

Amplification of three-dimensional perturbations as a vortex impinges on the front
stagnation point of a downstream cylinder in the presence of a uniform flow is
expected to occur for inviscid fluids owing to the presence of a cross-stream straining
flow near the cylinder front stagnation point, which leads to a vortex instability
resulting in growth of bending waves on the vortex core (Tsai & Widnall 1974;
Moore & Saffman 1975). Because amplification of vortex perturbations occurs only
as the vortex approaches very close to the cylinder surface, in real fluids the vortex
flow field is expected to be significantly influenced by viscous interaction of the vortex
with the cylinder boundary layer. The straining flow upstream of a cylinder is similarly
found by Hunt (1973) and Britter, Hunt & Mumford (1979) to be responsible for
amplification of the magnitude of the fluctuating azimuthal vorticity component as
turbulence impinges on a cylinder. This type of vorticity amplification might occur
as a limiting case of the near-parallel interaction problem considered in the present
paper, should the vortex perturbations grow to such an extent that the vortex wraps
around the front face of the cylinder.

The current study employs a proper-orthogonal decomposition (POD) method
(Holmes, Lumley & Berkooz 1998) to quantify the amplification of three-dimensional
perturbations as a vortex with small helical waves impinges on a cylinder, where
the nominal axis of the unperturbed vortex is parallel to the cylinder axis. The
study focuses on cases where the initial vortex perturbations are small, such that the
vortex exhibits significant three-dimensional features only as it approaches close to
the cylinder surface. The primary objective of the study is to examine the effects of
viscous interaction and finite vortex core radius on regulating amplification of the
three-dimensional vortex perturbations. A secondary objective is to determine the
conditions under which the approximation of two-dimensional flow is reasonable for
parallel vortex–cylinder interaction problems. These objectives are examined based on
computations of vortex–cylinder interaction in a viscous incompressible fluid over a
range of values of the helical vortex perturbation amplitude and wavelength and for
three vortex Reynolds numbers, in order to characterize the observed amplification
under different conditions.
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Figure 1. Schematic of the vortex prior to interaction with the cylinder, showing the
Cartesian coordinate system and various parameters used in the computations.

In § 2, we briefly describe the multi-block structured finite-volume method that
is used for the viscous vortex–cylinder interaction problems, along with a grid-
independence study. The POD method that is used to extract information on ampli-
fication of the three-dimensional vortex perturbations is described in § 3, along with
a further grid-independence study. The effect of viscosity on the three-dimensional
perturbation amplification is examined for cases with a range of initial helical wave
amplitudes and wavenumbers in § 4 for a Reynolds number of 300. The effect of higher
Reynolds numbers on amplification of the three-dimensional vortex perturbations is
examined in § 5. The issue of mode selection during vortex wave amplification is
examined for a problem where the initial vortex has perturbations with a range of
different wavenumbers in § 6. Conclusions are given in § 7.

2. Computational method
Computations of three-dimensional vortex–cylinder interaction are performed using

a finite-volume method with a block-structured grid (Lai 2000). The flow is assumed
to be incompressible with uniform density and viscosity. The control volumes (cells)
have a quadrilateral cross-section in the x, y (cross-stream) plane and uniform spacing
in the axial (z) direction. The numerical method stores all dependent variables at the
cell centres and uses a novel interpolation method to yield a second-order-accurate
approximation of the diffusive and convective fluxes on the cell boundaries for
arbitrary meshes. The PISO algorithm (Issa 1985) is used to couple momentum and
continuity equations. In order to provide additional numerical stability, the time
derivative is weighted between a second-order time derivative approximation and a
first-order upwind approximation, with characteristically about 90 : 10 weighting ratio.

A schematic of the vortex–cylinder interaction is given in figure 1, showing the
orientation of the Cartesian coordinate system used in the flow computations and
the orientation of the uniform flow velocity U , the nominal vortex core radius σ , the
cylinder diameter d , and the vortex perturbation wavelength 2π/kh. Vortex impact
on a cylinder is influenced by a wide range of dimensionless parameters, including
Reynolds number Re= Ud/ν, circulation parameter G =Γ/Uσ , dimensionless vortex
core radius R = σ/d , and helical perturbation wavenumber K = khd and amplitude
A= a/d . All variables in the paper are non-dimensionalized using d and d/U as
length and time scales, respectively. A listing of the different computations performed
is given in table 1.
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Case Re= Ud/ν A = a/d K = khd

1 300 0
2 300 0.01 4
3 300 0.03 4
4 300 0.06 4
5 300 0.2 4
6 300 0.03 2
7 300 0.03 8
8 600 0.06 4
9 1200 0.06 4

10 300 0.06 1–10

Table 1. Summary of different computational cases examined, with G =Γ/Uσ = 10 and
R = σ/d =0.5 for all cases.

A multi-block structured grid is employed to discretize the flow in the cross-stream
(x, y) plane, which extends from x = −7.14 to x = 12.38 in the streamwise direction
and from y = −3.57 to y = 3.57 in the transverse direction. The cylinder axis coincides
with the z-axis. The grid is very fine near the cylinder and just upstream of the
cylinder in order to resolve the incident vortex interaction with the cylinder face. The
boundary conditions consist of inlet and outlet conditions on the left- and right-hand
grid boundaries, the symmetry condition on the top and bottom grid boundaries, and
periodic boundary conditions along the cylinder axis. In order to induce onset of
vortex shedding from the cylinder, the inlet velocity has a small perturbation in the
x, y plane, given by

uinlet(y) = 1 + 0.05 sin[2π(y − yB)/(yT − yB)], (1)

where yT and yB denote the positions of the top and bottom boundaries, respectively.
The time step in all computations is held fixed at �t = 0.02.

Independence of the computational results to choice of cross-sectional grid is
examined by comparing a two-dimensional computation (in the x, y plane) for flow
past a cylinder at Re= 300, with both a fine mesh (Mesh 1; 19 716 grid points) and
a coarser mesh (Mesh 2; 10 682 grid points). A plot of the drag and lift coefficients
for the two grids is given in figure 2, which indicates close agreement between the
computations with the two grids. Experimental data reported by Fleischman & Sallet
(1981) for Re= 300 gives the mean drag coefficient as C̄d = 1.4 ± 0.1, the amplitude
of variation of the lift coefficient as C�,amp = 0.6 ± 0.25, and the Strouhal number
as St= 0.21 ± 0.01, yielding an oscillation period of T = 1/St = 4.76. These values
are in reasonably good agreement with the computational results. Three-dimensional
computations are performed by extended the fine mesh (Mesh 1) in the x, y plane
using 100 uniform increments in the axial (z) direction from z = −π to z = π. Grid
independence in the z-direction is examined further in § 3.

The computations are initialized using a three-step process. In the first step, we
compute steady uniform flow past the cylinder with no vortex present. In the second
step, we compute unsteady flow past the cylinder, allowing the Kármán vortex street
to fully develop. In the third step, we use a triply periodic Fourier spectral code to
compute the velocity field induced by a helical vortex with a specified dimensionless
perturbation amplitude A and wavenumber K , and nominal axis located at (x, y) =
(−2.57, 0). A rectangular Cartesian grid is used for the helical vortex computation
with the same exterior dimensions as the grid used for the vortex–cylinder interaction
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Figure 2. Variation of lift and drag coefficients with time for two-dimensional flow past a
cylinder with Mesh 2 (dashed line) and Mesh 1 (solid line).

problem. The velocity field from the helical vortex computation is then interpolated
onto the block-structured grid and added to the velocity obtained from the computa-
tion of unsteady uniform flow past a cylinder to obtain the initial condition for the
vortex–cylinder interaction computation. While this initial condition does not exactly
satisfy the no-slip condition on the cylinder surface, which results in production of a
weak vortex sheet on the cylinder at the initial time, the vorticity associated with this
vortex sheet is small and passes downstream before the vortex interacts significantly
with the cylinder. Of somewhat greater concern is the weak vortex sheet generated
at the inlet boundary due to the vortex-induced velocity in the initial condition. This
vortex sheet is advected into the vortex over time by the upstream uniform flow.
The strength of this upstream vortex sheet can be held at a small level by extending
the grid a sufficient distance upstream of the vortex, so as to increase the distance
between the vortex and the inlet boundary. In the computations presented in the
paper, the vorticity in the upstream vortex sheet is less than 1% of the nominal
vorticity magnitude within the initial helical vortex. Cases with different upstream
inlet boundary locations have been examined to verify that the upstream vortex sheet
has negligible effect on the reported computational results.

3. Proper orthogonal decomposition
Proper-orthogonal decomposition (POD) provides a method for extracting the

contribution of different axial and azimuthal wavenumbers of the velocity and
vorticity fields characterizing a three-dimensional flow field on a cylindrical polar
grid. We initiate the POD analysis by interpolating the vorticity field into a cylindrical
polar grid, which covers a portion of the full block-structured grid extending out to
a radius R =3.57 from the cylinder axis.
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The POD acts to project a field under examination, say u(x, t), onto a set of
orthogonal eigenfunctions {φ(n)} that are fitted to the given field, such that most of
the ‘energy’ of the field is contained in the first few terms (and often the first term)
of this expansion. We employ a simplified ‘slice POD’ procedure, related to that of
Gamard et al. (2002), which employs fixed-time, Fourier-transformed velocity and
vorticity fields in the axial and azimuthal directions to yield

2π

∫ ∞

0

R(t, r, r ′; m, k)φ(n)(t, r ′; m, k)r ′ dr ′ = λ(n)φ(n)(t, r; m, k), (2)

where λ(n) is the nth POD eigenvalue, R(t, r, r ′; m, k) = û(t, r; m, k)û(t, r ′; m, k) is the
radial correlation of the azimuthal and axial Fourier transforms of the scalar function
u(t, r, θ, x), and m and k are the azimuthal and axial wavenumbers, respectively. From
the Hilbert–Schmidt theorem, the scalar û can be decomposed as a sum over the
eigenfunctions as

û(t, r; m, k) =

∞∑
n=1

an(t; m, k)φ(n)(t, r; m, k), (3)

where an are the expansion coefficients. It is convenient for numerical solution of (2)
to make the kernel symmetric by defining new eigenfunctions ψ (n) ≡ r1/2φ(n) to give

2π

∫ ∞

0

[
r1/2R(t, r, r ′; m, k)(r ′)1/2

]
ψ (n)(t, r ′; m, k) dr ′ = λ(n)ψ (n)(t, r; m, k). (4)

The calculations indicate that nearly all of the signal energy is contained in the first
eigenmode. The POD method provides a means to compare the energy contained in
different azimuthal and axial modes of the flow by comparing the first eigenvalue
for the corresponding m and k values. In performing the POD analysis, the vorticity
field is first interpolated onto the cylindrical polar grid using a linear Lagrange
interpolation. The POD eigenvalues are computed by taking the discrete Fourier
transform in the azimuthal and axial directions, discretizing the integral over r in (4),
and solving for the first few eigenvalues of the resulting algebraic eigenvalue problem
for each m and k value using the DSYEVX subroutine in the LAPACK package.

The first POD eigenvalue λi is obtained as a function of the azimuthal and axial
wavenumbers, m and k, for all vorticity components. Summing the POD eigenvalues
over all azimuthal wavenumbers yields a measure λ̄i(k) of the ith vorticity component
as a function of the axial wavenumber k. For a purely two-dimensional flow, the
enstrophy would be clustered at the k =0 wavenumber, such that the value of POD
eigenvalues for k > 0 modes provides an indication of the magnitude of different
three-dimensional disturbances of the vorticity field. The helical vortex perturbations
are initiated with a specific dimensionless axial wavenumber K , which is varied in
the different computations. By observing the time variation of λ̄i(k) for different
wavenumber values and for cases with different helical perturbation wavenumbers
and amplitudes, we can determine how the incident vortex perturbations amplify and
how they interact with the ambient cylinder wake streamwise vortices.

The POD analysis approach is used to examine the sensitivity of the flow to
the axial grid resolution for a case with helical perturbation amplitude A= 0.06
and wavenumber K =4 and Reynolds number Re = 300 (Case 4) by comparing
computations for helical vortex impingement on the cylinder for a fine grid with
100 points in the axial direction (Mesh 1) with results for a coarser grid with 50 points
in the axial direction (Mesh 3). The first POD eigenvalue of the radial vorticity
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Figure 3. First POD eigenvalue of the radial vorticity component for Case 4 at t = 3, plotted
as a function of the azimuthal and axial wavenumbers.
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Figure 4. POD eigenvalues of the azimuthal vorticity summed in the azimuthal direction (λ̄θ )
showing amplification of three-dimensional disturbances, for Case 4 with Mesh 3 (dashed line)
and Mesh 1 (solid line), showing (a) variation of λ̄θ with axial wavenumber at time t = 2 and
(b) variation of λ̄θ with time for k = 4.

component (λr ) for all axial and azimuthal wavenumbers, k and m, is shown in
the contour plot in figure 3 for the fine mesh (Mesh 1) at time t = 3. The POD
eigenvalues are dominated by axial wavenumbers in the interval 1 � k � 6, whereas
the vorticity field exhibits broad spectral variation in the azimuthal wavenumber.
The POD eigenvalues are summed over all values of the azimuthal wavenumber to
compute the measures λ̄r , λ̄θ and λ̄z, which are used to determine how the enstrophy
associated with each vorticity component varies with axial wavenumber. In figure 4(a),
we plot λ̄θ as a function of the axial wavenumber at time t = 2 for both the coarse
and fine meshes. The time variation of the POD eigenvalue with k = 4 (corresponding
to the wavenumber of the initial helical perturbation) is shown in figure 4(b). The
dramatic growth of the azimuthal vorticity POD eigenvalue corresponding to the k =4
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Figure 5. POD eigenvalues of the radial, azimuthal and axial vorticity components for
impact of a straight vortex on a circular cylinder (Case 1) at time t = 1 (dashed line), t = 2
(dashed-dotted line), and t = 3 (solid line), as a function of axial wavenumber.

axial wavenumber as the vortex approaches the cylinder is indicative of amplification
of the three-dimensional vortex perturbations. The POD eigenvalues for the coarse
and fine grids are nearly identical at t = 2 for all axial wavenumbers (figure 4a).
Near the end of the vortex–cylinder impact, small differences appear in the POD
results obtained by the two grids for the higher wavenumber modes, as shown in
figure 4(b) for t > 2.4, leading to a difference in predicted peak POD value of about
15 % by the end of the computation for the k = 4 mode. The qualitative trends for the
results predicted with the coarse and fine grids are the same in all cases. All further
computations in the paper are performed using the fine mesh (Mesh 1).

4. Three-dimensional wave amplification – effects of perturbation amplitude
and wavenumber

The cylinder wake with no upstream vortex exhibits two types of streamwise vortices
(Mode A and Mode B) each with a specific axial wavenumber band, as indicated
in the stability analysis of Barkley & Henderson (1996). For Reynolds numbers
Re slightly greater than about 190, the cylinder wake exhibits streamwise vortices
which are dominated by Mode A structures, corresponding to axial wavenumber in
the interval 1.5 � k � 2.1. As the Reynolds number increases above about 230, the
Mode B structures begin to develop having wavenumbers in the interval 5 � k � 8,
with a broad Reynolds number interval where both types of structures co-exist
(Williamson 1996).

It is useful to first examine a case where the incident vortex is perfectly columnar,
with no three-dimensional perturbations. POD eigenvalues λ̄i of the radial, azimuthal
and axial vorticity components for impact of a columnar vortex on a circular cylinder
(Case 1) are plotted in figure 5 at times t = 1, 2 and 3 as a function of axial
wavenumber. These times correspond to conditions where the vortex is located about
two cylinder diameters upstream of the cylinder (t = 1), about one cylinder diameter
upstream (t =2), and impinging directly on the cylinder (t = 3). For the axial POD
eigenvalue, we have subtracted the large k = 0 mode so as to more clearly view the
other modes. The POD eigenvalues for all three vorticity components are dominated
by the k = 2 mode, corresponding to the Mode A cylinder wake vortices. As the vortex
approaches the cylinder and impinges upon the cylinder face, the peak POD eigenvalue
of the radial vorticity increases to about 175 % of its initial value, corresponding to
substantial increase in strength of the wake vortices. The POD eigenvalue of the
azimuthal and axial vorticity components, on the other hand, remain nearly constant
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Figure 6. Iso-surface of vorticity magnitude (ω =2) in the near-wake for vortex–cylinder
impact (Case 4) at times (a) t =1, (b) 2, (c) 3, and (d) 4. The surface is shaded grey in regions
with positive streamwise vorticity component and black in regions with negative streamwise
vorticity component.

as the vortex approaches the cylinder. Also, the values of the azimuthal vorticity
POD eigenvalue are nearly an order of magnitude smaller than those of the radial
and axial vorticity POD eigenvalues. The k = 0 mode of the axial vorticity POD
eigenvalue increases by about 125 % as the vortex approaches, corresponding to an
increased velocity on the lower side of the cylinder resulting in a greater maximum
vorticity value in the cylinder boundary layer.

The development of vortex wave amplification is examined in detail for Case 4,
with initial wave amplitude A= 0.06 and axial wavenumber K = 4. An iso-suface of
vorticity magnitude (ω = 2.0) is plotted in figure 6 at times t = 1, 2, 3 and 4, showing
the initial helical waves on the vortex core and the development of the waves as the
vortex impinges upon the cylinder and passes into the cylinder wake. The iso-surface
is shaded grey for regions with positive streamwise vorticity and black for regions with
negative streamwise vorticity. Streamwise vorticity (ωx) contours in the cross-sectional
plane x =1.4, which cuts across the cylinder wake just downstream of the cylinder,
are plotted in figure 7 at the same four times as in figure 6. For the first three times,
the vorticity contours in the cross-sectional plane in figure 7 are dominated by the
k = 2 streamwise wake vortices. These streamwise vortices move up and down in the
wake, and change the sign of the streamwise vorticity, corresponding to the natural
shedding cycle of the Kármán wake vortices. In the last frame (figure 7d), the vorticity
from the impinging vortex has advected back into the cylinder wake. In this frame,
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Figure 7. Streamwise vorticity (ωx) contours at the cross-sectional plane x = 1.4 for Case 4
at times (a) t = 1, (b) 2, (c) 3, and (d) 4. The final frame exhibits both wavenumber k = 2 and
wavenumber k = 4 vorticity patterns.

we observe a row of the k = 2 Mode A wake vortices along the bottom and a row
of the k = 4 perturbations from the impinging vortex along the top. These results,
as well as the POD results to follow, indicate that the cylinder wake vortices and
the three-dimensional perturbations of the impinging vortex maintain their individual
wavenumbers and do not significantly interact, at least for cases with relatively small
initial vortex wave amplitude.

Effect of initial perturbation amplitude

Amplification of three-dimensional vortex perturbations is best examined using the
POD eigenvalues for the different vorticity components, since in this way we can
extract a measure of the enstrophy associated with each axial wavenumber mode.
Cases are examined for values of the initial vortex wave amplitude of A= 0.01, 0.03,
0.06 and 0.2, with all other parameters held to the same values (Cases 2–5). In figure 8,
we plot the POD eigenvalues λ̄i , summed over all azimuthal modes, as a function
of axial wavenumber for each vorticity component at times t =1, 2, and 3 for cases
with initial wave amplitude A= 0.01, 0.03, and 0.06. The corresponding time variation
of the k = 4 mode, corresponding to the initial vortex perturbation wavenumber, is
plotted in figure 9. We have again subtracted the axisymmetric k = 0 mode from the
axial vorticity component POD eigenvalues plots in figures 8 and 9 in order to focus
on the influence of the three-dimensional vortex perturbations.

The radial vorticity eigenvalue exhibits peaks in figure 8 at k =2 and 4, but also
has non-negligible contributions from wavenumbers from the k = 3, 5 and 8 modes,
where the last mode increases substantially as the vortex impacts on the cylinder.
All three cases, with three different initial vortex wave amplitudes, exhibit nearly the
same POD eigenvalues for the k = 2 mode, corresponding to the ambient Mode A
wake vortices. This observation is further evidence that the three-dimensional vortex
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with initial helical wave amplitudes A = 0.06 (Case 4, solid line), A = 0.03 (Case 3, dashed line),
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vorticity components (summed over the azimuthal wavenumbers) for axial wavenumber k = 4,
with initial helical wave amplitude A =0.06 (Case 4, solid line), A = 0.03 (Case 3, dashed line),
and A = 0.01 (Case 2, dashed-dotted line).

perturbations have little effect on the cylinder streamwise wake vortices. The k =4
mode of the radial vorticity component exhibits an initial decrease between times
0 � t � 1 as the vortex approaches the cylinder, which is associated with the fact that
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Case λ̄z,H λ̄z,S λ̄z,I

λ̄z,H

λ̄z,I

λ̄z,H

λ̄z,S

2 0.0216 0.00124 0.000818 26.4 17.4
3 0.172 0.00124 0.00717 24.0 139
4 0.542 0.00124 0.0280 19.3 437
5 1.77 0.00124 0.247 7.17 1430
6 0.156 0.126 0.00758 20.6 1.24
7 0.0757 6.36 × 10−7 0.00560 13.5 1.19 × 105

8 1.33 0.502 0.0285 46.7 2.65
9 1.88 0.579 0.0284 66.2 3.25

Table 2. Amplification measures for three-dimensional flow Cases 2–9.

the vortex perturbations are becoming increasingly aligned in the azimuthal direction
during this stage of the interaction. Comparison of figures 8(b) and 8(c) indicates
substantial growth of the k =4 mode radial vorticity eigenvalue as the vortex impacts
on the cylinder face in the interval 2 � t � 3.

The k = 4 modes of both the axial and azimuthal vorticity eigenvalues exhibit
very significant amplification during the vortex impact on the cylinder face. For both
vorticity components, the POD eigenvalues peak at about t =3, as the vortex nominal
position coincides with the cylinder centre, and then decrease as the vortex passes
into the cylinder wake. As was similarly noted for the radial vorticity eigenvalues,
the higher wavenumber k = 8 mode exhibits substantial increase in the azimuthal and
axial vorticity fields as the vortex impinges on the cylinder face (near t = 3), but the
magnitude of the k =8 mode is always much smaller than the primary k = 4 mode.

Amplification of the vortex three-dimensional perturbations is quantified based on
ratios of three measures of the perturbation ‘size’: (i) the peak value of λ̄z as the
perturbed vortex approaches the cylinder (λ̄z,H ), (ii) the value of λ̄z for the initial
helical vortex with no cylinder wake present (λ̄z,I ), and (iii) the peak value of λ̄z for
an initially straight vortex approaching the cylinder (λ̄z,S). All of these measures are
computed for axial wavenumber k =K , corresponding to the initial wavenumber of
the helical perturbation. The values of these measures are listed in table 2 for the
different three-dimensional computations reported in the paper. The ratio λ̄z,H /λ̄z,S

provides a measure of the relative contributions of the impinging vortex and the
cylinder wake on the POD eigenvalues. When λ̄z,H /λ̄z,S � 1, the peak POD eigenvalue
is dominated by amplification of the three-dimensional perturbations of the impinging
vortex. In this case, the ratio λ̄z,H /λ̄z,I provides a measure of the amplification of the
three-dimensional perturbations due to impingement of the vortex upon the cylinder.

For the different initial vortex wave amplitudes considered in Cases 2–5, the value
of the ratio λ̄z,H /λ̄z,S increases steadily from 17 to 1430 as the initial wave amplitude
increases. In all of these cases, the amplification measure λ̄z,H is dominated by the
helical vortex perturbations, and the cylinder wake exhibits very small eigenvalues at
this wavenumber. For the three cases with smallest initial amplitude (A= 0.01, 0.03,
and 0.06), the amplification ratio λ̄z,H /λ̄z,I is 26.4, 24.0, and 19.3, respectively. The fact
that these ratios differ by only about 30 % while λ̄z,I and λ̄z,H individually change
by over a factor of 30 suggests that the amplification factor becomes independent of
perturbation amplitude for sufficiently small values of the initial amplitude. For the
case with A= 0.2, nonlinear effects appear to play a much greater role in regulating
the amplification, and the amplification ratio λ̄z,H /λ̄z,I drops significantly to 7.2.
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Figure 10. Time variation of drag and lift coefficients for cases with initial helical wave
amplitude A = 0.2 (Case 5, solid line) and the straight vortex (Case 1, dashed line).

The drag and lift coefficients for Cases 2–4, with initial helical wave amplitudes of
A = 0.01, 0.03, and 0.06, are nearly identical to those for the straight vortex (Case 1).
The drag and lift coefficients for Case 5, with initial vortex wave amplitude A= 0.2,
are compared with those for the straight vortex case in figure 10. Even for initial wave
amplitudes as high as 20 % of the vortex core radius, the drag force is found to differ
from that for a straight vortex by at most 7 %, and the difference in lift coefficient
is even smaller. This close agreement indicates that even though three-dimensional
perturbations exhibit significant amplification as a vortex impinges on the cylinder
face, the three-dimensional perturbations do not have a significant influence on the
cylinder force, at least for cases with relatively small-amplitude vortex waves as
considered in the present paper.

Effect of initial perturbation wavenumber

The effect of initial perturbation wavenumber is examined by comparison of the time
variation of the POD eigenvalues λ̄i of the three vorticity components for the k = 2,
4 and 8 modes in figure 11 for cases with initial helix wavenumber K = 2, 4 and
8 (Cases 6, 3 and 7). For each of these cases, we observe a significant effect of the
three-dimensional perturbations only for the mode where the axial wavenumber k is
equal to the initial wavenumber K of the helical vortex waves.

For K = 2 (Case 6), the initial helical vortex waves have the same axial wavenumber
as the streamwise Mode A wake vortices. For the k = 2 mode, we observe only
a slight difference in the radial vorticity eigenvalue due to the three-dimensional
perturbations, indicating that the radial vorticity eigenvalue is primarily dominated
by the streamwise wake vortices. The azimuthal and axial vorticity eigenvalues exhibit
significant amplification for the K = 2 perturbations, but the amount of amplification
is significantly less than that for higher perturbation wavenumbers. Both the K =4
and K = 8 cases exhibit a similar degree of amplification of the azimuthal vorticity
eigenvalues. However, the amplification of the axial vorticity eigenvalues for the K =8
case is less than half that for the K = 4 case.

The amplification measures for Cases 3, 6 and 7 listed in table 2 indicate that
for Case 6 (with K =2), the amplification measure λ̄z,H is significantly influenced
by the Mode A streamwise vortices in the cylinder wake, with the corresponding
ratio λ̄z,H /λ̄z,S = 1.24. For this case, the ratio λ̄z,H /λ̄z,I is therefore not indicative of
amplification of the impinging vortex perturbations. On the other hand, for Case 7
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Figure 11. Time variation of POD eigenvalues (summed over the azimuthal wavenumbers) for
the radial, azimuthal and axial vorticity components for cases with initial helical wavenumbers
K = 2 (Case 6, dashed-dotted line), K = 4 (Case 3, solid line), and K = 8 (Case 7, dashed line).
The eigenvalues are plotted for axial wavenumbers (a) k = 2, (b) k = 4 and (c) k = 8.

(with K = 8) the ratio λ̄z,H /λ̄z,S = O(105), so the cylinder wake has little effect for this
wavenumber. The corresponding amplification ratios for the K = 4 and K = 8 cases are
λ̄z,H /λ̄z,I = 24.0 and 13.5, respectively, indicating slightly greater amplification of the
impinging vortex perturbations for the K = 4 case. Further analysis of amplification
at different perturbation wavenumbers is given in § 6, in which we examine a case in
which the vortex is initiated with a broad spectrum of initial wavenumbers.

5. Three-dimensional wave amplification – effects of Reynolds number
The effect of Reynolds number was examined by repeating the computation with

perturbation wavenumber K =4 and amplitude A= 0.06 for Reynolds numbers of
600 and 1200 (given by Cases 8 and 9 in table 1). This increase in Reynolds number
leads to a significant broadening of spectral dependence on the axial wavenumber
within the cylinder wake, corresponding to a change whereby the streamwise vortices
transform from the wider Mode A type to the narrower Mode B type (Williamson
1996). As the Reynolds number increases, we also observe more interaction between
the vortex perturbations and the streamwise wake vortices.
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Figure 12. Contour plot showing first POD eigenvalue of the azimuthal vorticity component
as a function of axial and azimuthal wavenumbers at time t = 3 for cases with (a) Re= 300
(Case 4), (b) 600 (Case 8), and (c) 1200 (Case 9).
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Figure 13. Streamwise vorticity (ωx) contours at the cross-sectional plane x = 1.4 at time
t = 4 for cases with (a) Re= 600 (Case 8) and (b) Re= 1200 (Case 9).

The effect of the spectral broadening at higher Reynolds numbers can be seen in
figure 12, where we plot the first POD eigenvalue of the azimuthal vorticity component
as a function of azimuthal and axial wavenumbers at time t = 3 for Reynolds
numbers 300, 600, and 1200. For Re = 300 (figure 12a), the azimuthal vorticity is
strongly dominated by the axial wavenumber mode (k = 4) of the initial helical
perturbations, with azimuthal wavenumber dependence gradually decaying over the
interval 0 � m < 15. As Reynolds number increases to 600 and 1200 in figures 12(b)
and 12(c), the flow exhibits broader variation with axial wavenumber throughout
the interval |k| < 10. For Re= 1200, the azimuthal wavenumber dependence also
broadens, with the flow exhibiting strong POD eigenvalues even out to m = 15.

The spectral broadening is also evident when examining the structure of the
streamwise vortices within the cylinder wake. For instance, in figure 13 we plot the
streamwise vorticity component (ωx) on the cross-sectional plane x = 1.4 at time t =4
for both the Re= 600 and 1200 cases. The corresponding plot for the case with
Re = 300 is given in figure 7(d). In all of these figures, the bottom row of streamwise
vorticity is due to the cylinder wake and the top row is a remnant of the impinging
vortex structure. The transition from Mode A vortices to Mode B vortices within
the cylinder wake is clearly evidenced by the shorter dominant length scale of the
vortex structures along the bottom row in figures 13(a, b) compared to the k =2
dominant structures in figure 7(d). In figure 13(a), the remnants of the incident vortex
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Figure 14. Plot of the first POD eigenvalue of the azimuthal vorticity component, summed
over azimuthal wavenumbers, as a function of axial wavenumber at times (a) t = 1, (b) 2, (c) 3,
and (d) 4 with Reynolds numbers Re= 300 (Case 4; dashed-dotted line), 600 (Case 8; dashed
line), and 1200 (Case 9; solid line).

perturbations for the Re = 600 case appear to have maintained a k =4 dominance and
to not significantly interact with the cylinder wake structures, as was also the case for
Re= 300. By contrast, the vortex structures along the top row in figure 13(b) for the
Re= 1200 exhibit a much richer wavenumber spectrum and appear to be extending
down and interacting with the wake vortex structures along the bottom row.

The first POD eigenvalue of the azimuthal vorticity component, λ̄θ , is plotted in
figure 14 as a function of axial wavenumber at four times for cases with Reynolds
number 300, 600 and 1200. The Re = 300 cases exhibits a narrow wavenumber
dependence, confined primarily to k =4, and generally has lower POD eigenvalues.
The cases with Re =600 and 1200 have much broader wavenumber dependence in
the interval −15 � k � 15, which, as discussed above, is due primarily to the richer
wavenumber dependence within the cylinder wake at higher Reynolds numbers.
Figure 14 indicates that even with this fuller wavenumber dependence, it is mainly the
k = 4 mode (matching the perturbation mode on the incident vortex) which amplifies
significantly for the Re = 600 case, indicating separation of the incident vortex
amplification and the cylinder wake vortices. On the other hand, the Re = 1200 case
exhibits amplification in a number of wavenumber modes as the vortex approaches
the cylinder, including very significant amplification for the k =2 and k = 10 modes.
It is not clear whether the broader wavenumber amplification at higher Reynolds
numbers is due to interaction of the different perturbation modes of the impinging
vortex with each other or to interaction of the impinging vortex with the cylinder
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Figure 15. Time variation of the k =4 mode of the POD eigenvalues (summed over the
azimuthal wavenumbers) for the radial, azimuthal and axial vorticity components for cases
with Re =300 (Case 4; dashed-dotted line), 600 (Case 8; dashed line), and 1200 (Case 9; solid
line).

wake, although figure 13(b) suggests that both processes may be occurring. The
time variation of the k = 4 mode of the first POD eigenvalue of the three vorticity
components λ̄r , λ̄θ , and λ̄z is plotted in figure 15 for Re =300, 600 and 1200. Both the
azimuthal and axial vorticity components exhibit significant growth in time.

The amplification measures λ̄z,H , λ̄z,S , and λ̄z,I for these higher Reynolds number
cases (Re = 600 and 1200) are listed in table 2. Because of the broader spectral content
of the cylinder wake at these Reynolds numbers, the ratio λ̄z,H /λ̄z,S is much smaller
than it is for the Re = 300 case. Based on these measures, it appears that roughly
two-thirds of the amplification measure λ̄z,H is due to amplification of the impinging
vortex perturbations and about one-third is due to the streamwise vortices in the
cylinder wake. The amplification ratio λ̄z,H /λ̄z,I is observed to increase with Reynolds
number, having values of 19.3, 46.7, and 66.2 for cases with Re =300, 600 and 1200,
respectively. Even if we reduce the values of this ratio by multiplying by a factor of
2/3 for the two higher Reynolds number cases to correct for the effect of the cylinder
wake, the data still indicate that the amplification ratio increases substantially as the
Reynolds number increases. This observation is consistent with the speculation from
§ 2 that viscous diffusion between the impinging vortex and the cylinder boundary
layer act to suppress amplification of the vortex perturbations.

6. Mode selection during three-dimensional wave amplification
A final computation was performed in order to examine the relative amplification

rate for different vortex perturbation modes as the vortex impinges on the cylinder.
In this computation (Case 10), the vortex is perturbed with equal-amplitude
perturbations for all wavenumbers in the interval 1 � k � 10, such that the vortex
axis position at the initial time is given by

r(z, t0) = −cex +
A

N

N∑
n=1

[cos(nz)ex − sin(nz) ey], (5)

where A= 0.06 and N = 10. The initial perturbation amplitude for any one wave-
number is A/N = 0.006.

The first POD eigenvalues of the radial, azimuthal, and axial vorticity components
at time t = 3 are given as functions of the axial and azimuthal wavenumbers in
figure 16. This figure indicates broad spectral variation in both axial and azimuthal
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wavenumbers. The growth in time of the POD eigenvalues for all vorticity components
is plotted as a function of axial wavenumber in figure 17, in which different curves are
used to indicate the POD eigenvalues at time t = 1, 2, 3 and 4 as the vortex structure
approaches and impinges on the cylinder. Growth of the vortex perturbations is
particularly apparent for the azimuthal vorticity component.

The amplification measures λ̄z,H , λ̄z,S , and λ̄z,I are computed for each axial wave-
number in the interval 1 � k � 10, and the results are listed in table 3. For wavenumbers
k = 1 and 2, the value of λ̄z,S is of the same order as the value of λ̄z,H , indicating that
the cylinder wake makes a significant contribution to λ̄z,H for these wavenumbers.
For k � 3, however, λ̄z,S is at least an order of magnitude smaller than λ̄z,H , so the
ratio λ̄z,H /λ̄z,I should be an accurate measure of the vortex perturbation amplification
for wavenumbers in this range. The maximum value of the amplification ratio in the
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k λ̄z,H λ̄z,S λ̄z,I

λ̄z,H

λ̄z,I

λ̄z,H

λ̄z,S

1 0.0120 0.0103 0.00147 8.16 1.17
2 0.137 0.124 0.000832 165 1.10
3 0.0134 4.13 × 10−5 0.000690 19.4 324
4 0.0139 0.00124 0.000525 26.5 11.2
5 0.0109 5.05 × 10−6 0.000448 24.3 2160
6 0.00847 2.27 × 10−5 0.000371 22.8 373
7 0.00592 5.59 × 10−7 0.000314 18.9 1.06 × 104

8 0.00533 6.27 × 10−7 0.000306 17.4 0.85 × 104

9 0.00348 1.86 × 10−7 0.000251 13.9 1.87 × 104

10 0.00434 1.06 × 10−7 0.000409 10.6 4.09 × 104

Table 3. Amplification measures as a function of axial wavenumber for Case 10.

interval k � 3 is observed to occur for k =4, with a gradual fall-off in amplification
ratio as the wavenumber increases. The value of the amplification ratio for k =4
is found to be 26.5, which is very close to the value 26.4 obtained for Case 2 with
the vortex initialized with only the K = 4 perturbation (and initial wave amplitude
A= 0.01). Similarly, the amplification ratio for Case 10 with k = 8 is found to be 17.4,
which is reasonably close to the value 13.5 obtained for Case 7 with only the K =8
perturbation. The slightly lower amplification ratio for Case 7 may be due to the fact
that the initial perturbation amplitude (A= 0.03) for this case was somewhat higher
than the effective amplitude A/N = 0.006 for each wavenumber mode in Case 10. A
similar slight reduction in amplification ratio with increase in perturbation amplitude
is observed in comparing Cases 2–4. The observation that the amplification ratio
has a similar value for Case 10, where a broad spectrum of perturbations is present,
and in cases where only one wavenumber perturbation is present suggests that, at
least for small perturbation amplitude, there is not significant interaction between
perturbation modes with different axial wavenumbers.

It is of interest to compare the wavelength associated with the observed fastest-
growing k = 4 perturbation (L = 2π/k ≈ 1.6) with other length scales associated with
the problem. For instance, this fastest-growing wavelength is reasonably close to
the cylinder diameter, which has a length d =1. As noted in § 1 of the paper, the
perturbation amplification is hypothesized to be associated with instability of the
vortex under the straining flow near the front stagnation point of the cylinder flow
field. For the problem of a vortex with elliptical cross-section in a plain straining
flow, Landman & Saffman (1987) report that instability occurs only for wavenumbers
where the Ekman number, define by Eγ =2πνk2/γ , lies in the interval 0 � Eγ � 1.
Here ν is the kinematic viscosity, k is the vortex axial wavenumber, and γ is half
of the vorticity within the ambient vortex core. For the case considered in this
section, this result indicates that the straining instability will occur within the interval
0 < k < 17.4. The most unstable axial wavenumber for a vortex with nearly circular
cross-section in a straining flow was examined by Moore & Saffman (1975) and
Tsai & Widnall (1976). These investigators find, using several different methods, that
the most unstable bending wave on the vortex occurs for an axial wavenumber of
kσ =2.5. For the core radius value σ =0.5 used in this section, we obtain the most
unstable wavenumber as k = 5, corresponding to a wavelength of L = 2π/k ≈ 1.3. The
fact that both the cylinder diameter and the most-unstable vortex straining instability
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wavelength are relatively close to the observed wavelength of the fastest-growing
wave in our calculations makes it difficult to clearly associate the observed wave
amplification with a specific one of these scalings.

7. Conclusions
Parallel vortex–cylinder interaction is examined for three-dimensional viscous flows,

focusing on the amplification of three-dimensional perturbations as a vortex impinges
on a cylinder. The growth of these perturbations is quantified using a proper
orthogonal decomposition (POD) approach based on the Fourier-transformation
of the vorticity vector in the axial and azimuthal directions and a POD eigenvector fit
in the radial direction. This approach yields clear information on the time variation of
the enstrophy associated with different components of the vorticity field as functions
of the axial and azimuthal wavenumbers. Summation of the POD eigenvalues over the
azimuthal wavenumbers yields a measure of the growth of the vortex perturbations
as a function of axial wavenumber alone. To further quantify the growth of three-
dimensional perturbations, a set of three amplification measures is defined that
provides an indication of the peak value of the perturbation enstrophy as the vortex
impinges on the cylinder, of the initial value of the perturbation enstrophy, and
of the peak enstrophy due to the cylinder wake, all of which are evaluated at the
axial wavenumber associated with the imposed vortex perturbation. Ratios of these
measures are used to deduce the degree to which the cylinder wake contributes to the
POD eigenvalues at that wavenumber and the degree of amplification of the vortex
perturbation as the vortex approaches the cylinder.

Cases with different values of the initial helical perturbation amplitude A= a/d and
wavenumber K = khd are examined for three different Reynolds numbers. Significant
amplification of three-dimensional vortex perturbations is observed for all cases.
For low Reynolds number cases (Re = 300), the amplification is confined mainly
to the prescribed wavenumber of the initial vortex perturbation, and the evolution
of the vortex perturbation is not significantly influenced by the streamwise vortex
structures within the cylinder wake. The amplification ratio is observed to be nearly
independent of the incident vortex initial perturbation amplitude for small values of
the initial amplitude, but to depend on perturbation initial wavenumber and the flow
Reynolds number. Maximum amplification is observed for initial perturbation axial
wavenumber of approximately K = 4, corresponding to a wavelength approximately
equal to 1.5 times the cylinder diameter. As the Reynolds number is increased (up to
Re= 1200), a broader spectrum of axial wavenumber modes is observed in both the
cylinder wake and the vortex amplification response. The amplification ratio increases
significantly with increase in Reynolds number, which supports the speculation that
viscous diffusion between the vortex and the cylinder boundary layer suppresses
amplification of the vortex three-dimensional perturbations.

In order to examine competition between different axial wavenumber modes, a
computation is performed where a spectrum of different initial perturbations is
introduced on the vortex, with axial wavenumbers spanning from 1 to 10. The k = 4
wavenumber mode is again observed to have the largest amplification ratio, with
gradual decrease in amplification ratio as the wavenumber increases. The different
perturbation modes have little interaction for cases with small initial perturbation
amplitude, such that the amplification ratio observed for a computation with a broad
spectrum of axial wavenumbers present is close to that observed with only one axial
wavenumber in the initial vortex perturbation.
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The present paper shows that even in cases where the incident vortex appears
to be aligned in such a manner that the vortex-body interaction is nearly two-
dimensional, small three-dimensional perturbations on the impinging vortex grow
significantly as the vortex impacts upon the cylinder face. Even for the relatively low
Reynolds number cases examined in this paper, the enstrophy associated with the
three-dimensional vortex perturbations is observed to increase to well over an order
of magnitude greater than its initial value as the vortex impacts upon the cylinder.
Increase in Reynolds number only serves to increase the amplification ratio. These
three-dimensional perturbations lead to the formation of streamwise vortex structures
which are eventually swept into the cylinder wake, to join the streamwise cylinder
wake vortices that naturally occur in Kármán vortex street wakes.

The above discussion indicates that parallel vortex-body interaction is not a strictly
two-dimensional flow problem, even for cases where the mean flow appears to be
two-dimensional. This is, of course, also the case even for the simpler problem of
uniform flow past a cylinder, where the two-dimensional flow structure breaks down
with the formation of streamwise wake vortices at about Re =190. On the other hand,
the three-dimensional vortex perturbations are found to have remarkably little effect
on the cylinder force variation during vortex impact, even for cases with initial vortex
wave perturbation amplitudes of up to 20 % of the vortex diameter.

This project was supported by the US Office of Naval Research under grant number
N00014-01-1-0015. Dr Thomas Swean is the program manager.
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